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room-temperature values are not in such good agree- 
ment; the difference between the two model values is 
8-11%. This is not surprising since both models give 
comparable fits to the 80°K dispersion curves but at 
300°K there are so few experimental points that one 
cannot make the same statement. Consequently one 
may expect corresponding discrepancies between the 
eigendata generated by the two models. Calculated 
values of (U~) for the cesium halides are also shown 
in Table 2 but shell model results are not available 
for these crystals, thus no comparison is possible. 

In Table 3 the computed BK values are compared 
with the values derived from the measurements of the 
recoilless fraction for the Cs + ion in the cesium halides 
at 4.2°K and for the I-  ion in RbI and Csl at 80°K. 
The computed values of BK for the I-  ion agree with 
the measured values within the experimental error. The 
computed and measured values for the Cs + ion are 
in agreement to within 3 or 4 %. The experimental un- 
certainties are quoted as being less than 2% in all 
cases. It is possible that better agreement could be ob- 
tained for the Cs + ion if the eigendata used in this work 
were derived using 4.2°K input data in the lattice- 
dynamical calculations. 

The calculated Br values and those measmed by 
X-ray difflaction for CsC1, CsBr, Csl, and RbC1 at 
300°K are also shown in Table 3. The computed and 
measured results agree within the experimental un- 
certainty for all the ions except for the C1- ion in 
RbC1, the Cs + ion in CsC1, and the Br- ion in RbBr 
where the difference between the theoretical and ex- 
perimental values is 10-12%. The computed room- 
temperature data should not be taken too seriously 
since no account has been taken of anharmonic effects. 

The experimental uncertainty in the X-ray measure- 
ments is also generally high. 

In conclusion we can say that the computed results 
based on the DD models are generally in close agree- 
ment with the measured results. To obtain better agree- 
ment one should include anharmonic effects in the cal- 
culations. It would also be desirable to see measure- 
ments of Br made as a function of temperature. 

References 

AGRAWAL, B. S. &; HARDY, J. R. (1974). Solid State Com- 
mun. 14, 239-244. 

AGRAWAL, B. S. & HARDY, J. R. (1975). To be published. 
BARNEA, Z. & POST, B. (1966). Acta Cryst. 21, 181-182. 
BEAVER, J. P. (1974). Ph.D. Thesis, Univ. of Nebraska, 

Lincoln. (Unpublished). 
BOYLE, A. J. F. & PERLOW, G. J. (1966). Phys. Rev. 151, 

211-214. 
CHIPMAN, D. R. & PASKIN, A. (1959). J. Appl. Phys. 30, 

1998-2001. 
CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 

321-324. 
CUNNINGHAM, S. L., SHARMA, T. P., JASWAL, S. S., HASS, 

M. & HARDY, J. R. (1974). Phys. Rev. B 10, 3500-3511. 
GOVINDARAJAN, J. (1973). Acta Cryst. A29, 576-577. 
HAEEMEISTER, D. W., DE PASQUALI, G. & DE WAARD, H. 

(1964). Phys. Rel~. 135, B1089-B1101. 
JAMES, R. W. (1965). The Optical Principles of the Diffrac- 

tion of X-rays, p. 48. Ithaca: Cornell Univ. Press. 
JARVINEN, M. & INKINEN, O. (1967). Phys. Stat. Sol. 21, 

127-135. 
MARADUDIN, A. A., MONTROLL, E. W., WEISS, G. H. & 

IPATOVA, I. P. (1971). Solid State Physics, Suppl. 3, 
Chaps. 7 and 9. New York: Academic Press. 

REID, J. S. & SMITH, T. (1970). J. Phys. Chem. Solids, 31, 
2689-2697. 

Acta Cryst. (1975). A31, 252 

A Probabilistie Theory in P1 of the invariant EhEkE~Eh+k+~ 

BY C. GIACOVAZZO 

Istituto di Mineralogia e Petrografia, Universit& degli Studi di Bari, Italy 

(Received 30 October 1974; accepted 2 November 1974) 

Some joint probability distributions are studied in order to derive an estimate of the probability that 
the sign of the invariant EuEkEiEh+k+l is positive. It is shown that this probability depends chiefly 
on the seven magnitudes I Ehl, I Ek[, ILl[, I Eh + k + d, I Eh + ul, I Eh + d, [Ek + d, and may be larger as well as smaller 
than ½. 

Introduction 

Schenk (1973a) has derived from semi-empirical ob- 
servations a useful condition for strengthening the 
reliability of the relation 

A weight E4 which depends on [Eh+kl, lEh+d, lEk+d, 
was introduced for (1), 

E4: N-X]EhEkEIEh+k+a[ {1+ IEh+kl+lEh+d+lEk+d ! 
Eooo 

(/)h "~- ~k "~ (/)1 -- (~h+k t-1 --~0. (1) (2) 
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Hauptman (1974a) has derived a negative cosine in- 
variant expression, subject to the condition IEh+d 
[Eh+ll-----IEk+d----O" 

COS ({O h "l" {ok -1- {Ol "l" {o-h--k--l)  = 
Ix(B) 

Io(B) ' 
(3) 

with B =  2N-qEhEkEIE_h_k_I] .  
For the special case h = k  (3) reduces, after re- 

indexing, to 

2~h ÷ ~_h+k ÷ {o_h_k =7C . (4) 

This relation has been tested in PT by Schenk & De 
Jong (1973), and by Schenk (1973b) in P1, on the basis 
of criteria motivated by the Harker-Kasper inequal- 
ities. The general theory of the invariants (2{oh+ 
{ o - h + k ' l ' { o - - h - k )  in P1 and P1 has been given (Giaco- 
vazzo, 1974a, b) from joint-probability distribution 
functions. In a recent paper Schenk (1974) has ex- 
plored in the space group PT the reliability of the 
negative-quartet relations as a function of B and for 
different limit values of 

m=(lEh+kl+lEh+ll+lEu+l[)/3 . (5) 

A probabilistic theory in P 1 of the cosine invariant 
cos (Oh + {ok + {O~ + P-h-k--l) nevertheless has been given 
more recently by Hauptman (1974b). This theory leads 
to expected values of the cosine lying between - 1 and 
÷ 1. In particular, the estimate of cos ((,Oh + {ok ÷ {O~ ÷ 
{o-h-k-0 tends to - 1  when B is large and 
IE,,+kl, IEh+,l, IEk+ll are sufficiently small. 

In this paper a general probabilistic theory of the 
invariant EhEkE~Eh+k+l will be described in PT. The 
mathematical approach follows that used by Giaco- 
vazzo (1974a) for deriving the distribution function of 
(2{oh÷{o_h+k÷{o_h_k) in PT. 

The joint probability distribution 
P(Eh, Ek, EI, Eh +k, Eh +1, Ek +I, Eh + k +!) 

For convenience we introduce the abbreviation 

E I = E h ;  & = E R ;  E 3 = E I ;  E 4 = E h + k ;  E s = E R + I ;  

E 6 = R + I ;  E7 = E h + k + l  • 

By generalizing Klug's (1958) mathematical termin- 
ology, we derive the characteristic function (Giaco- 
vazzo, 1974e) 

C(ul, Uz, Ua,.. •, UT) = exp {--~(ull z ÷ uz2 + . . . + u27} 

x { 1 + S3/t 3/z + (S4/t z ÷ S~/2t 3) 

÷ (Ss/t 5/z ÷ $3S4/t 7/z ÷ S]/6t 9/z) 

S~ S3S 5 1 S284 "l" 1 s4 ~ } 
+ ( t-~- + ~ +-St- +:-7--  =-i6-l+... 

(6) 

where u~, i=  1 , . . . ,  7, are carrying variables associated 
with E~, t = N/2, 

r$... w 
Sv = t ~ IN-- -w I (iuO'(iuz)S"" (iu7)~ 

r+s+...+w=v r 

and 
KrS. • ,W 

2rs...w = m(r+s+ ...w)/2 • 

K,s...w are the cumulants of the distribution and m is m 
the order of the space group (m = 2  in P 1). After some 
calculations we find 

1 
S3/t 3/z-  VN {(iu0 (iu2) (iu4)÷ (iuO (iu3) (ius) 

+ (iuz) (iu3) (iu6)+(iul) (iu6)(iuT) 

+ (iuz) (iUs) (iuv)+ (iu3) (iu,) (iu7)}, 

2 " " 

+½[(iul) (iu2) (iu3) (iu7) 

+ (iuO (iu2) (iUs) (iu6)+ (iux) (iu3) (iu4) (iu6) 

÷ (iUz) (iu3) (iu4) (ius)÷ (iul) (iu4) (ius) (iu7) 

÷(iu2) (iu4) (iu6) (iUT)+(iua) (iu5) (iu6) (iu7)] }, 

1{ 
$5/t5/2-- 2 N / N  -[(iu~)a(iu2) (iu4) + (iuO (iu2)a(iu4) 

+ (iul) (iu2) (iu4) 3 

÷ (iuO3(iu3) (ius) + cycl. 

+ (iu2)a(iu3) (iu6) + cycl. 

+ (iul)3(iu6) (iu7) + cycl. 

+ (iUz)3(iu5) (iuT) + cycl. 

÷ (iu3)3(iu4) (iu7) ÷ cycl . . . .  ] 

÷ [(iux)Z(iu4) (iu5) (iu6)÷ (iuz)Z(iu4) (iu5) (iu6) 

÷ (iu3)Z(iu4) (iu5) (iu6) ÷ (iu4) (iu5) (iu6) (iu7) z] } .  

The probability distribution function is found by 
taking the Fourier transform of (6). We obtain, correct 
up to and including terms of order N -3/z, 

1 [ 1 z 2 .÷E72)] P(E~, Ez . . . . .  E7)= ( 2 ~  exp t -  ~(E~ + E 2 ÷ . . .  

× I+- -~[E~EzE,+E~E3E5 

+ E2E~E6+ E~E~E~+ &E~E~+ E~E4E~] 

1 
÷ - ~ -  [-- H4(E1) - - . . .  -- H4(ET) 
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+(E2 2-1)  (e 2 -  
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8E, E~E3E7+8E,&EsE6 

8E1E3E4E6+8E,E3E,,E5 

8ExE4EsE7 + 8E2E4E6E7 + 8E3E~E6E7] 

1 [  +(E2 - 1) (E 2-1)  (E 2-1)  

1) (E2-1) 

1) (E2-1) 

1) (By2-1) 

1) (E~-l) 
1)(ETa- 1) 

2(E~ - 1)EzgaE4Es + 2E~(E~- 1 )EaE4E 6 

2(E}- 1)E,E4E, E7 + 2EI(E~- 1)E4E~E7 

2E1E2E3(E]- 1)E7 + 2E1E2(E~- 1)EsE6 

2(E~ - 1)E3EsE6E 7 -{- 2EI E2E3(E ~ - -  1)E7 

2E~(E~- 1)E4E~E~ + 2E~E~E~(E~- 1)E7 
2(E 2-1)E3EsE6E7 + 2Ez(E 2-1)E,,E6E7 

2EIEzEsE6(E 2-1)  + 2E~EaE4E6(E 2-1)  

2E2E3E4Es(E2~ - 1)] 

1 
2NVN [-- Ha(E~)EzE4- Ha(E1)E3Es 

- H~(E~)E~E~- H~(EOE~E~ 

- H3(Ez)EsET- H3(E3)EaET-Cycl . . . .  

+ EaEsE6(E~ + E~ + E~ + ETZ- 4)] 

1 
+ ~ [ -  ~H~(E,)E~E4- ~H~(EOE~E~ 

-~s H4(EOEzE3E6-~Hs(EOE6Ev 

- Xs H4(E,)EzEsEv - ~ Ha( E~)E3EaE7 

+ EIH~(&)E,, + . . .  

1 
+ ~ E4E~E6[(E~- l) (e~-  1) 

+ ( E ~ -  1) (E32-1)+(E 2-1)  (E72-1) 

+(E2 2-1)  (E 2-1)  + (E22 - 1) (E~ 2-1)  

+(E3 2-1) (E 2- I ) + 6E~E2EaET] 

1 
+ 6-N--~ [H3(E1)H3(Ez)H3(E4) 

+ H~(EOH~(E~)H~(&) + . . .  

+ H~(E3)H~(E4)Hz(E7) 

+ 3n~(e0 (e~-  1)Ez(E4 ~- 1)E~ 
+ 3(E~ 2-1)H3(Ez)E3(E24 - 1)E~, 

+ 3n~(EO (E~- 1) (E l -  1)E.E7 

+ 3(E 2-1)H3(E2) (E 2-1)EsE7 

+ 3(E 2-1)  (E22 - 1)EaHa(E4)E7+... 

1 + ~ E.E~E~ 

× [(E 2-1) (E 2- I) (E 2- I) 

+(E 2- I) (E2 2- I) (E~ 2- I) 

+(E~ 2-1)  (E~- 1) (E72-1) 

+(E 2-1) (El- I) (E 2- I) 

+ E, E2E3Ha(E7)+ E~EzH3(E3)E7 

+ E~Ha(E2)E3E7 + Ha(E,)EzEaE7 + . . .  ]}. 

(7) 

Hv is the Hermite polynomial of the vth order defined 
by 

d v 
Hv(x) = ( -  1) v exp (½x 2) ~ exp [-½x2]. 

Some terms not essential to our aim are omitted in (7). 
The conditional joint probability distribution 
P(E,,Ez, Ea, ET[E4,Es, E6) is defined by 

P ( EI, Ez, E3, E7I E4, Es, E6) 

P ( E,, E2, E3, E4, Es, E6, ET) 

l~o ., l+_____~O0 m(gl, g2,g3,g4,gs, g6,g7)dgldg2dg3dg7 
(8) 

The denominator of (8), after some calculation, equals 

1 z(E4 + E2 + E2)] (2zc)3/z exp [ -  1 2 

1 + H4(gs)+ H4(g6)]} × { 1 - - 8 ~  [H4(E4) (9) 

The conditional expected value <EaE2EaETIE4,Es, E6> 
is defined by 

< 

× E, EzEaETP(E,,Ez, E3,ETIE,,Es, E6)dE, dE2dEadET. 

From (8) and (9) we obtain 

<E1E~E~EdE,, E~,E~> 

1 {  1 / 
(2~z) 2 1-[Ha(E4)+ H4(Es)+ H4(Ee)]/8N 

x . . .  exp [ -  ½(E~ + E~ + E~ + E~)] 

+ E1E2EaE7 

x [(E~- 1)+(E 2-1)  + (E62-1)l 
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6_6 E~E~E]E~E4EsE6 +-~N [E2'E~E~(E~- 3E~) 
+ I/N 

2 2 4 2 2 2 4 3E2)E3E7 + ExEz(E 3 _ 3E3)E7 + EI(E 2-  2 2 2 

(E~- 3E})E~EIE~]} dE, dE, dE, dE7 + 

1 
{ 1 - [H4(E4) q- H4(Es) + H4(E6)]/8N} 

{ 6 } 
1 EZ + E~ + E~-  2 + - ~  E4EsE6 (1 O) x - ~  

P+ =½+½ tanh {-~- IE1E2E3E7[ × 

We may expand the conditional probability distribu- 
tion of the random variable R = EIE2E3E7 in a Gram- 
Charlier series (Cram6r, 1951): we obtain 

1 [ ( R - ( R ) )  2 ] 
P(RIE4'Es'E6)= -a-V~ exp . . . . .  2a 2 + . . .  

where (R) is given by (10), and 
2 2 2 2 cr z <E1EzEaE7IE4,Es, E6)-<E1E2E3ETIE4,E5,E6) z. )1 

As P + =  P +1 , 

we find 

E] + E~ + E~- 2 + 6E4EsE6/I/N ] 
1 -[H4(E4) + H4(Es) + H4(E6)]/SN + 4[E,] + E~ + E~-  3]/N + 60E4EsE6/N]/N f" 

Similarly: 
2 2 2 2 <E1E2E3E7[E4, Es, E6) 

1 1 m × 
(27Z) 2 ] - -  [ H 4 ( E 4 )  -k H 4 ( E s )  q- H 4 ( E 6 ) ] / 8 N  

N . . . Z~lZ.,2z.~3J-J 7 
- - o o  - - o o  

[ - (E~ + E2 + E~ + E72)/2] × exp 2 2 

× {1 -  1 [H4(E0+ +H4(E7)] 

1 
+ U #  [H~(E3H~(E~)H~(E4) 

+ H~(E3H~(Ez)H~(E~)+ H~(E2)H~(E~)H~(E6) 

+ H~(EdH~(E6)H~(E~)+ H~(E~)Hz(E~)H,(E~) 

+ H~(E~)Hz(E4)H~(E7)] 
1 

-I- ~ [H2(E0 + Hz(E2) 

+ H~(E~)+ H~(E~)]E4E~E6 

1 
+ ~ [H2(E~)H2(E2)+ Hz(E~)H2(E3) 

+ H2(EOH2(E7)+ H~(Ez)H,(E~) 

+ H~(E2)H~(E7)+ H~(E~)H~(E7)]E4E~E6 
1 

+ ~ [H2(EOH2(Ez)H2(E3) 

+ H~(E3H~(E~)H~(E7)+ H~(E3Hz(E~)H~(E7) 

+ Hz(Ez)Hz(E3)H2(E7)IE4EsE6} dE~dE2dE3dE7 

1 
l - [H4(E4) + H4(Es) + H4(E6)]/8N 

x 1 - ~ [H~(E4) + H4(E,) + H4(E6)] 

60 } 
+--N4 [El + E z + E~- 31 + ~ E4EsE6 

(11) 

When N is large enough, (11) tells us that the product 
E4+Es+E~-2> E1EzE3E7 is probably positive when 2 2 

0, probably negative when E l +  z z Es + E 6  < 2. The char- 
acter of positivity or negativity is strengthened by large 
values of IEIE2E3E71. 

In order to reduce computing time, a simplified form 
of (11) may be suggested. In Fig. 1 we have plotted the 
curves of H4(E) and 32(E 2 - 1 ) . / / 4  is slightly negative 
or positive in the range (0-2.5) and reaches notable 
values for IEI>3. The contribution of 32(EZ-1) is 
always predominant over that of//4 in the range of the 
usually observed IEI values, with the exception of the 
range (0.9-1.1). In this last range, nevertheless, we may 
safely neglect [ -  H4(E) + 32(E 2 - 1)]/8N in comparison 
with unity. 

In conclusion, when all IEI values are in the range 
(0-3.5), (11) may be approximated without large errors, 
by 

P+ ~½+½ tanh {-N- IE1EzE3ETI 

2 } E4 + E5 + E~- 2 + 6E4E:6/l/U 
× 1 +4[Ea2+Es_t_E6_2 2 3]/N+6OE4EsE6/NI/N • (12) 

The role of the product E4EsE6 

We have carried the expansion (7) as far as terms in 
1/N 3/2 so that we might gain some insight into the 

4 0 0  

3 0 0  

2 0 0  

s s  s /  

l o o  

5 0  

4 IEI 
- 5 0  

F ig .  1. T h e  fu l l  l ine  r e p r e s e n t s  32I t2(E) ,  t h e  b r o k e n  l ine  H 4 ( E ) .  
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importance of the various terms in practical calcula- 
tions of P+. 

It is evident from (11) that, if 1E4,5,61 =IEaEsE61 is 
very small, the probability function P+ reduces to 

The use of [E4,s,61 instead of E4,5 ,  6 would give some 
difficulty in the region in which E42 + E~ + E62_~ 2. Al- 
though the quartets in this region are generally ex- 
cluded from the procedures for phase determination, 

P+-2"i +i2 tanh 1 IE1f2E3E71 x 
E ] + E 2 + E 2 - 2  

1 tH4(E4)-i 2 H;@,~)+IU4(E6)]/8N+4[E~4 + E~ + E26-3]/N " 
(13) 

If 1E4,5,61 is not small, (13) may be a poor approxima- 
tion of (11). As the sign of E4.5. 6 is generally unknown, 
a comparative study of (11) and (13) is worthwhile. It 
seems useful, in particular, to look for the conditions 
in which the sign of E4,5.6 is not critical, in order to 
assign a correct value of P÷. It would be necessary to 
this end to compare the values of (11) and (13) in the 
allowed region of variation of E4, Es, E6. This is, how- 
ever, very tedious and we shall not give the calculations 
here. Useful information, nevertheless, may be derived 
by a simplified treatment. We shall confine ourselves 
to the computation of the values N(R>/a z, as defined 
in (11) and (13), in the particular ease where lEa1 = 

IEsI=IE61. The results for N = 3 0  and N=60  are 
plotted in Figs. 2 and 3: it is a reasonable assumption 
that the trend of these results may carry over to cases 
in which E4, Es, E6 adopt any values. 

Inspection of Figs. 2 and 3 suggests the following 
conclusions: 

(a) Equation (11) is approximately symmetric in 
Ea,s,6 in a range around zero. This range becomes 
larger as N increases: in particular, when N = 3 0  the 
pseudo-symmetry is verified for IE4.5,61<3"4, when 
N = 6 0  for lE4.5.61 < 8. In other words, in these ranges 
the value of P+ is independent of the sign of E4,s.6: 
also (11) is well approximated by (13). 

(b) At large values of IEa,s,6l (11) is strongly asym- 
metric. In particular, for positive values of E4.5.6 the 
probability that the invariant is positive appears over- 
estimated in (13). 

(c) Equation (11) presents a discontinuity at nega- 
tive values of E4.5,6. This behaviour has no physical 
meaning and is due to including in (11) only terms up 
to 1IN 3/z. In fact, we have represented the probability 
distribution as an asymptotic series and the actual val- 
ues of the probability we obtain will be correct to the 
degree of approximation we choose. We should expect, 
therefore, that the inclusion in (11) of terms of higher 
order than 1/N 3/z will have the effect of enlarging the 
field in which (13) is pseudo-symmetric. This observa- 
tion is in accordance with the fact that the discontinuity 
shifts to higher negative values of E4,5,6 as N increases. 
The above considerations suggest that a useful formula 
would be 

it seems better for small [E4,5,6l to use (13) instead of 
(14). (14) seems a better approximation for large values 
of ]E4,5,6] since a large percentage of products E4EsE6 
is positive in this range. This property may be derived 
from the same distribution function (7)" in fact 

P+ (EIE2E3E4EsE6E7) ~_ ½ 

6 IE1E2E3E4EsE6ETI 
+½ tanh N I / ~  1 +24/1'N (15) 

(15) provides the probability that El. 2 ..... 7 = E~Ez... E7 
is positive and shows that, for large E,,2 ..... 7 values, 
Et,2.3, 7 and E4,5,6 have the same sign, which is positive 
from (11). (15) deserves a final consideration. The set 
of normalized structure factors E~, E2 . . . .  ,E7 satisfies 

7 
the property Y~hj =0. (15), nevertheless, is not a partic- 

1 
ular case of the Simerska (1956) formula 

1 
P+(E~E2...E,,)=½+½tanh N<,,_~)/2 IE, E2...E,,I 

which would provide in our case a relation of order 
N-S/2. (15) has been derived, in fact, from the product 
$3S4 [the Sj are defined in (6)] which is not zero because 
both $3 and $4 include non-zero standardized cumul- 
ants. Cases similar to this are not provided by the 
Simerska formula, but may often result when phase 
relationships of high order are used. So, the sole use 
of the Simerska formula may be misleading in these 
cases, because it may lead to the neglect of stronger 
correlations. 

T h e  d i s t r ibut ions  

e(Eh, Ek, El,Eh+k, Eh+l, Ek + l, Eh + k + 1, E h -  k, . . . .  ) 

In the preceding sections we have shown that the 
knowledge of [Eh+u[, IEl,+ll, ]Eh+d may provide a good 
measure of the probability of the sign ofEhEkE, Eh+k+~. 
The additional knowledge of [Eh-kl, lEh-ll, lEk-ll may 
contain further information which may be used to as- 
sign a more accurate value of P+. 

To verify this we have studied the distribution 

P(Eh, Ek, EbEh+k, Eh+I,Ek + ,, Eh + u + 1, Eh- k) , 

1 IE1E2EaE7[ x P+=½+½ tanh -~- 
E~, + E~ + E 2 -  2 + 6[E4EsE6I/ I/N 

1 - [ H 4 ( E 4 )  + H4(Es) + H4(E6)]/8N+ 4[El + E~ + E62223]iA721- 60IE4EsE6I/N}/N " 

(14) 
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and have obtained the formula (Es=Eh-k)  

<R> 
P + = ½ + ½ t a n h  I&EzE~E71 , :  , 

where 

(16) 

< R > = <E, E2EaE7IE4, Es, E6, Es> 

6 
- N1 [E]+E~+E~-2+E4Es]+ ~--~NE4EsE6 

1 Es + E6 q- E~ 'k  2 ]EsE6Es  , + N---vy[E4~+ 2 
2 2 2 2 ~e= (E~EeE~E~IE,, E~, E6, Es> 

1 1 
=1 + ~ EsE6Es- [H4(E4) + H4(Es) 

V~V 

- 4 - ' ~ 9 .  
I 

! 

8 

6 

4 

- 4  I- 

- ,7  ' ' E 

Fig. 2. The full line represents N<R>/a 2 as defined in (13) in 
the case in which IEh+kl----IEh+d = Igl,+,l and N=30. Under 
these conditions the broken line is the plot of N<R>/t7 2 a s  
defined in (1 l). 

i, / 
/ 

,o / 

\ ,/" 
',\ I ,'/ ',\ "k ,"/ 

',,\ ~ ,,/ 

\ - -'~.@.~t 

F i g .  3. A s  in  F i g .  2, w i t h  N =  60.  

4 [E]+EZs+E~_3+EaEs] + H4(E6) + n4(&)] + -~- 

2 1 
+ - K  (EaZ- 1)+ ~ (Es2- I ) (E~- I )  (Es2-1) 

1 
8N[/N EsE6Es[H4(E4)+ H4(Es) + H4(E6) 

E4EsE6 
+ H4(Es)] + --N--V-N--(56+4E82) 

EsE~E~ 
+z(E8 1)] +4__N_/_~__tE~+E~+E26_ 6 , 2 _  

1 1 
+ 6N]/~  Ha(Es)H3(E6)Ha(E8)~- 1 + -~- EsE6E8 

1 2 + ~ [ E 4 + E ~ + E ~ - 3 + E . E s + '  2 ~ ( E s -  1)] 

1 
+ 2-N= ( E l -  I) (E6 2-  1) (Es 2-  I) 

E4EsE6 
+ NI/-------- ~ -  (56+4E~) 

• E 4 E ~ E ~  
+4 ~.,-7-r7-~ [E4 2 + E~ + E6 z 

D/V/v 

_ _  

- 6  1 2 + z ( E 8  - 1)] 

1 
6N[/N Ha(Es)H3(E6)H3(Es) . 

The reader will be able to derive an approximate 
formula for the case in which lEh-kl, IEh-,I, IEk-ll are 
all known. (16) tells us that the value of P+ depends on 
the signs of the products E4,5,6 and E5.6,8. These signs 
are a priori unknown but, statistically, are prevalently 
positive. To show the general character of (16) we have 
plotted in Fig. 4 the values of N(R>/a 2 in the range 
(0-4) for N =  30,60 (full lines). For the sake of simplic- 
ity we have supposed IE4I = [Es] = IE0l = I&l, which may 
be a rough approximation of real cases. The curves 
reveal no marked deviations compared with the anal- 
ogous curves calculated for (11) (broken lines). In 
particular the probability levels in (11) and (16) are 
reasonably close. We can conclude that the 
sign of EhEkEiEh+k+l depends strongly on 
]Eh+k[,[Eh+,l,lEk+l[, while the dependence on 
Eh- k, Eh-,,  Ek- ,  seems weak. These normalized struc- 
ture factors, therefore, may be neglected in the direct 
procedures which use quartet relationships without 
compromising the accuracy of the results. 

R e d u c e d  d i s tr ibut ion  f u n c t i o n  

Not all [Ej] factors, j =  1 , . . . ,  7 are necessarily known. 
In this part of paper, therefore, we wish to consider 
some simplified distributions in which only six or five 
E~ factors are present in the set of measured reflexions. 
It is expected, in these cases, that some useful informa- 
tion may be derived (Schenk, 1974). 

Let us suppose that only two of the three reflexions 
h + k,h + l , k  + 1 are present in the set. By the same 
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mathematical approach described above we derive, 
from the marginal distribution function 

P(Eh, Ek, E1, Eh+k, Eh+l, Eh+k+l) , 

the relationship 

1 
P+ ~½+½ tanh O [EhEkE~G+k+,I 

E2+k + 3"81En+kl/I/N 
x 

1 +4(E~+k--  1)/N+ 381Eh+kI/NI/N " 
(20) 

1 IEhEkEtEh+k+,[ P~_ _~½+½ t a n h ~  

(E~+k +Eli+l--  1) 
x 1+ ~ 2 _ • 4 E h +  k q - E h +  1 2]/N (17) 

(19) and (20) are derivable from (14) by assigning in 
the terms of order 1/NI/N the expectation value 0-8 to 
the unknown normalized structure factor. It is easy to 
show that (19) and (20) agree with (11) more than (17) 
and (18). 

Equation (17), correct up to N -3/2 order, tells us that 
EuEkE~Eu+k+I is probably positive if EhZ+k+E~+, > 1, 
probably negative otherwise. We note explicitly that, 
if EhZ+k+E~+,>2, the knowledge of IEk+ll cannot 
transform a quartet defined positive by (17) into one 
defined negative by (14). If only one of the three re- 
flexions h + k, h + 1, k + 1 is present in the set, from the 
marginal distribution P (Eh, Ek, El,  Eh + k, Eh + k ÷ 1), we 
obtain 

C o n c l u d i n g  r e m a r k s  

In this paper has been described in P1  a probabilistic 
theory of the invariant EnEkEIEn+k+I. The theory 
leads to estimates of the invariant which may be posi- 
tive or negative according to the values of 
[En+kl, [En+I[, ]Ek+l[. On the other hand, the values of 
IEh-kl, IEh-ll, IEk-d only weakly affect the sign of the 

P + " ~ x + '  tanh 1 IEhEkEiE~+k+ll - -2  ~ -~ -  

1 
× I + 4 ( E ~ + k - - 1 ) / N ' E ~ + k "  (18) 

(18) may be useful to strengthen the positivity of the 
quartet EhEkE~En+k+l if IEh+kl is large: one cannot 
however derive, from the additional knowledge of the 
single IG+kl, a condition for defining a negative 
quartet. (18) seems, therefore, less reliable than (11) 
and (17). 

It should perhaps be emphasized that the probability 
levels in (17) and (18) are not on the same scale as in 
(11): from an algebraic point of view the contribution 
of order 1/NI/N in (17) and (18) equals zero. This fact 
could involve an overestimate of the sign probability 
when [Eh+kl and IEh+II in (17) or IEh+kl in (18) are 
very large. As in the automatic procedures for phase 
determination one may use (11) as well as (17) or (18), 
the situation appears to contrast with the principles 
usually adopted for proper weighting. We have plotted 
in Fig. 5 (full lines) the values of N(R)/a 2, as defined 
in (17) and (18), in the range (2-4) and for N=30 .  
For the sake of simplicity we have supposed IEh+kl = 
IE~+d in (17). As we can see (17) and (18) really 
provide an overestimate of P+ for large IEh+kl and 
IEh+d : this property is enhanced in (17). To overcome 
this difficulty one could suggest for quartets strongly 
defined positive, the formulae 

, 1 
P + ~ ½+½ tanh ~ -  IEhEkEIG+k+ll 

( E ~ + k + g ~ + , -  1 +4"81G+kEh+d/l/N) 
1 +4[E~+k + E~+l-- 2]/N+481Eh+kEn+ll/NI/N ' 

(19) 

lO 

! iiI 
N --30 

E 

Fig. 4. Full lines and broken lines represent respectively the 
values of N<R>/a 2 as defined in (16) and in (11) in the case 
in which IEh+kl = IEh+ d = . . .  

6- 

5- 

4- 

3- 

2 

2 

Y 

4 E 

Fig. 5. Full lines 1 and 2 represent respectively N<R>/a 2 as 
defined in (18) and (17) when N = 3 0 .  It has been supposed 
in (17) that IEh+kl = [Eh~_ll. The function N<R>/a z as defined 
in (11) is plotted as the broken line. 
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invariant. The formulae obtained are correct up to 
1/N 3/2 order and contain some products of normalized 
structure factors whose signs are a priori unknown. 
The signs of these products are not very critical for the 
estimate of the sign of EhEkEzEh+k+~, but their mag- 
nitudes may affect the scale of the probability levels. 
Several formulae have been suggested in order to keep 
on an absolute scale the probability levels provided by 
the theory (i.e. on the same scale as the triplet rela- 
tionships). In this connexion it seems that some role 
may be played, for large values of IEh+k[ ,  [Eh+ll, IEk+l[ 
and small N, by the terms of order 1/N 2. The variance 
of the sign relationships, in fact, is very sensitive to the 
terms of higher order when N is not too large, and 
assumes values remarkably different from one. The 
problem of the scale of the probability levels fortunately 
does not exist for middle and small 1E4,5,61, because 
the terms of higher order are then negligible. 

It would be useful to verify the conditions of validity 
of the formulae obtained and to test the scale of the 
probability levels. A positive verification of the theory 
here described would allow, in the direct procedures 
for sign determination, the use of quartet as well as 
triplet relationships on the same scale of reliability. 
A strong stimulus in this direction is the observation 
that the theory seems very suitable for identifying the 

negative invariants EhEkE~Eh + k+ 1" In the field of 
negative invariants, in fact, the terms of order 1/N 3/z 
are negligible in comparison with the terms of order 
1IN. These last terms involve only the magnitudes of 
the normalized structure factors and are unambiguous. 

The work was stimulated by a meeting with Dr H. 
Schenk. The author is indebted to him for many 
helpful discussions and for his general interest. 
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Recently derived expressions [Giacovazzo (1975). Acta Cryst. A31, 252-259] for the reliability of 
quartets have been tested. For the negative quartets (NQ's) the new expressions lead to an improve- 
ment compared with the empirical estimates of the NQ reliability used so far. However, the reliability 
of all quartets can be better estimated by means of the weights of the empirically derived strengthened 
quartet relation (SQR). 

Introduction 

Recently phase relations between four reflexions, 
quartets, have shown to be very useful for the solution 
of special problems in direct methods. Strengthened 
Quartet Relations, referred to as SQR's, can be success- 
fully employed for selecting a good starting set in 
symbolic-addition procedures and multisolution ap- 
proaches (Schenk, 1973a). Negative quartets, referred 
to as NQ's (Hauptman, 1974; Schenk, 1974) and their 
two-dimensional analogues, the Harker-Kasper type 
relations (Schenk & de Jong, 1973; Schenk, 1973b) 

proved to be very useful to find the correct solution out 
of a set of ~2 solutions, particularly in symmorphic 
space groups. 

In these cases the value q of the structure invariant 

q~n + ~bK + q~L + q~-H-K-L=q (1) 

is estimated with the magnitudes [E,+K], [E~+d, 
]EK+L[ and the quantity 

E4 = N-1IEnEKELE_ n_K_ L[ . (2) 

For NQ's with q_~ n, the value of E4 has to be large and 
those of [E/~+K[, [E~+L[ and [EK+L[ have to be small. 
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